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Abstract - Quasi-TEM propagation, appropriate for a
linearly tapered microstrip line (LTML), is modeled and
known microstrip impedance behavior is approximated
directly. The felegrapher's equation and the resulting ABCD
matrix is solved in terms of Airy functions, commonly
available in scientific programming libraries. The
theoretical model has been verified with measurements.

I. INTRODUCTION

Linearly tapered microstrip lines (LTML) are important
for matching networks, eliminating step discontinuities
between transmission lines and lumped elements such as
transistors, etc. They are also used in analog signal
processing and pulse shaping and are a common
component of VLSI design and allow for smoother
connections between high-density integrated circuits.

Though much work has been done in the area of non-
uniform transmission lines, a simplified analytical model
for a linearly tapered microstrip transmission line (width
varying linearly with longitudinal distance), employing
appropriate quasi-static propagation assumptions has not
been previously developed and supported by experimental
results, This paper presents such a model. The early work
as illustrated by [1] and [2], though mathematically
elegant, made ideal transmission line assumptions such as
TEM propagation and examined situations where the
distributed impedance and admittance were contrived so
that an exact analytic solution would be possible for the
telegrapher's equations.

While still assuming TEM propagation [3] analyzed a
non-uniform transmission line where the distributed
impedance was linearly tapered as a function of
longitudinal distance. The tapered line was viewed as a
two port circuit and the ABCD matrix parameters were
presented in terms of Bessel functions, albeit incorrectly.
In [4] non-uniform transmission lines were analyzed in
terms of cascaded linearly tapered lines, which included a
correction (o the previous Bessel function ABCD mairix
model. In this case the TEM propagation in each cascaded
section combines to approximate the quasi-TEM
propagation in the complete non-uniform line. A linearly
tapered microstrip line (lincarly tapered width) was
analyzed using ten sections and results were equivalent to

those produced by a twenty section uniform line
approximation, No models were compared against
measured experimental resuits.

In this work, an approximate closed form for the
solution of a LTML is found. The characteristic
impedance and effective dielectric constant as a function
of W/H ratio are examined for typical microstrip lines. It
is noted that these properties can be closely approximated
by exponential and linear expressions. When these
expressions are used in the telegrapher’s equation for a
linear W/H variation, a solution is found in terms of Airy
functions, which are commonly available in scientific
pregramming libraries. Experimental results are shown to
verify the resulting model.

II. MOBEL DEVELOPMENT

We begin by treating a linearly tapered microstrip line
(LTML) of length £ as a loss-less transmission line whose
distributed series impedance and distributed shunt
admittance is represented by pure inductance and
capacitance, respectively. Both the inductance and
capacitance are functions of the distance atong the
microstrip line, x. A time harmonic dependence, i.e.
€’™ , is assumed and results in equations (1) and (2).

Z(x)=jwL(x)
Y(x)= joC(x)

(0
@

The telegrapher's equations, (3) and (4) express the
relationship between voltage and current.

AX) v @
dx
% - Z()H() @
Differentiating (4) and substituting (3} yields
d*v (1 dZYdv :
I il S =0
drx* [z dx]dx (wz)v )

The unit-less quantity YZ is recognized as the
propagation constant squared and is related to the
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dielectric constant. For quasi-TEM propagation £, is
replaced with the effective dielectric constant &, .

YZ=-a’LC==(w/v,)’ =—(@/c) e,y (6)

Variation of microstrip effective dielectric constant and
characteristic impedance has been modeled accurately
using the Hammerstad and Jensen [5] model shown below
in Fig. 1 for a range of diclectric constants representing
commonly used substrates. One immediately notes that
the characteristic impedance and effective relative
dielectric constant for a LTML. on a diclectric substrate,
can be approximated with exponential and linear
expressions as a function of distance. These expression in
turn impose a functional form on the distributed series
impedance and the distributed admittance of the line.
Such plots motivate the assaumptions made in the
development of the LTML model that follows.

Motivated by the apparent linear natwe of £, we
lete,, =d, +d,x for 0 x<€, where fis the length of
the tapered line. Therefore

YZ =—(@/cY e, =—(w/c)(d, +dyx) (D

Since the characteristic impedance for a LTML is
observed Lo be exponential in nature we are motivated to
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Fig. 1. Microstrip characteristic impedance and effective
dielectric constant using Hammerstad and Jensen model.

consider letting Z{x) be of the form
Z = jod,e™ (®)
Since the characteristic impedance equals,

Z. =7/ =Vz21vZ

—dyx

then

e

,fdl +d,x

We note that the characteristic impedance is dominated
by an exponential behavior as desired. Substituting (7)
and (8) in the second order differential equation {5) yields
(10).

Z. =cd, M

dv  av
?+AE+(B+CX)V:O (10)

where 0<x<£, and
A=d,, B=(@/c)*d,,and C=(w/c)’d,

The solution to this differential equation is expressed in
terms of the Airy Functions of the first and second kind
(see IV. APPENDIX) as shown below.

V{x)=C,F(x)+C,G(x) (1D
where

A
Flx)=e T Ai({) (12)

Ax
G(x)=e ?Bi({) (13)

1 A2 —4B—4Cx

{= RS (14)

The terms C, and C, are the arbitrary constants that
accompany a general solution of a second order
differential equation, Ai and Bi are Airy functions of
the first and second kind, respectively. The current is
found using the telegrapher equation (4), which results in

Z(x)I(x) =-C F'(x) - C,G'(x) (15)

Direct substitution of (11) and (15) yields

Vix) Y [ Fl G Y G a6
ZWIx)) \=Fx) -G MC,

Letting M and U be defined as

F(x)  G(x)
MUFLFH)_GQJ Bt
and
U(x)=(1 OJ (18)
0 Z(x)
and letting
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E(x)=M(x)U(x) (19) 1

then (16) implies that the following matrix product is 1.3 — Mag 511 Modeled I
. - . . . @ Mag 511 Measured
invariant, i.e., a constant, or independent of the distance x. |

«(ic5)

0§

If E, = E(x=0), and E, = E{(x = ¢) then it follows that

Vil_ et (V2 |
sl e

2 4 8 8 2 14
gEE-CAD Frequency in GHz 11/2902

which we recognize as the ABCD matrix describing a two
port circuit. Therefore, 0.8

ABCD=E'E, (22)

= Mag 511 Modeled ﬁ
! © Wag 511 Measured
Circuit B

III. MODEL VERIFICATION

Four circuits, designated Circuit A through D, were
constructed to verify the Airy function models. Fig. 2
illustrates two types of circuits used for model verfication
(see Table I). TRL calibration and de-embeding was
employed with an 8510 to obtain the results shown in

Fig. 3. For the circuits each LTMIL. was modeled as two Frequency in GHz 1170908
cascaded tapered sections. ABCD matrices for each
section were then modeled using the new Airy function R
formalism. e
1.4
1.
]

08 — Mag 511 Modeled
N © Mag S11 Measured

gEE-GAD Frequency in GHz . 11/28/02

% 4 5 5 10 12 14
gEE-GAD Frequency in GHz 11728002

] -Fig. 3. Comparison of measured versus modeled data for test
Fig. 2. Microstrip circuits used for experimental verification circuits A, B, C, and D (See Fig, 2 and Table 1),
of the Airy function modeling
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TABLE I*

Circuit ==> A B C D
E 2.6 2.6 9.8 9.8
H 30 30 25 25
W max 200 200 200 200
W min 81.7 81.7 23.6 23.6
L 1500 3000 1500 1500
L1 250 500 250 250
CKT Type 1 1 I ]

*All lengths in mils.

As further verification, results from our approach using
the Airy function model have been compared to those
obtained using an iterative impedance transformer method.
In this method a tapered line is divided into multiple
equal-length short segments with impedances that vary
stepwise from one segment to another, In this case the
input impedance is determined for the combined set of
lines and then used to calculate the reflection coefficient
{Sy11) or other S parameters. Since one expects a larger
number of segments to produce a more accurate
approximation the tapered line was divided into 1000
segments. This is computaticnally slow, but a comparison
showed that results from this model were identical with
those obtained using the Airy function method.

IV. APPENDIX

The voltage differential equation (10) is of the

following form where A is a constant and f(x)is a linear
fanction.

2
‘fix‘: +A%+f(x)v =0 23)

The first derivative term can be eliminated introducing a
function W(x) defined by the transformation

Ax

Vix)=e 2W(x) (24)

The differential equation, where f(x)=B+Cux, then
becomes

T2 z
ddxvr —[%——B—Cx]w=0 (25)

Motivated by the fact that this resembles the Airy
differential equation,
a2
240 _rugy=o (26)
¢
we transform the independent variable using the
relationship ¢ = f#+7x expecting that the constants j
and ¥ can eventually be chosen so that (25) turns into
(26). Solving for x and substiuting the results into (25)
produces

yd{2 4 r ¥

The constant part of the expression in the parentheses
vanishes if

2 2
2d W_(A__B+c_ﬂ_c_s”}w=o

T2
' A
=|B-— 27
p-Ho-%] @
and the differential equation simplifies to
2
y2 d_‘Z + _C_EW =0 28)
a¢c ¥

Letting ¥ =(— C)", this becomes the Airy differential
equation where

2

The solution to the original differential equation (10) is
therefore given by

A
V=e TW() (30)
where
2
[A——BJ—CJC
4
¢= (—C)ZB &2

and W({) is an Airy function of either the first or second
kind, usually denoted by Ai and Bi.
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