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Abstract - Quasi-TEM propagation, appropriate for a 
linearly tapered tier&rip line (LTML), is modeled and 
known microstrip impedance behavior is approximated 
directly. Fe telegrapher’s equation and the ,wdtb,g ABCD 
matrix is solved in term5 of Airy functions, commonly 
available in scientific programming libraries. The 
theoretical model has been verified with measurements. 

I. 1NlR0DUcn0N 

Linearly tapered microstrip lines (LTML) are important 
for matching networks, eliminating step discontinuities 
between transmission lines and lumped elements such as 
transistors, etc. They are also used in analog signal 
processing and pulse shaping and are a common 
component of VLSI design and allow for smoother 
connections between high-density integrated circuits. 

Though much work has been done in the area of non- 
uniform transmission lines, a simplified analytical model 
for a linearly tapered microstrip transmission line (width 
varying linearly with longitudinal distance), employing 
appropriate quasi-static propagation assumptions has not 
been previously developed and supported by experimental 
results. This paper presents such a model. The early work 
as illustrated by [l] and [2], though mathematically 
elegant, made ideal transmission line assumptions such as 
TEM propagation and examined situations where the 
distributed impedance and admittance were contrived so 
that an exact analytic solution would be possible for the 
telegrapher’s equations. 

While still assuming TEM propagation [3] analyzed a 
non-uniform transmission line where the distributed 
impedance was linearly tapered as a function of 
lotigitudinal distance. The tapered line was viewed as a 
two port circuit and the ABCD matrix parameters were 
presented in terms of Bessel functions, albeit incorrectly. 
In [4] non-uniform transmission lines were analyzed in 
terms of cascaded linearly tapered lines, which included a 
correction to the previous Bessel function ABCD matrix 
model. In this case the TEM propagation in each cascaded 
section combines to approximate the quasi-TEM 
propagation in the complete non-uniform line. A linearly 
tapered microstrip line (linearly tapered width) was 
analyzed using ten sections and results were equivalent to 

those produced by a twenty section uniform line 
approximation. No models were compared against 
measured experimental results. 

In this work, an approximate closed form for the 
solution of a LTML is found. The characteristic 
impedance and effective dielectric constant as a function 
of W/H ratio are examined for typical microstrip lines. It 
is noted that these properties can be closely approximated 
by exponential and linear expressions. when these 
expressions are used in the telegrapher’s equation for a 
linear W/H variation, a solution is found in terms of Airy 
functions, which are commonly available in scientific 
prognumning libraries. Experimental results are shown to 
verify the resulting model. 

II. MODEL DEVELOPMENT 

We begin by treating a linearly tapered microstrip line 
(LTML) of length e as a loss-less transmission line whose 
distributed series impedance and distributed shunt 
admittance is represented by pure inductance and 
capacitance, respectively. Both the inductance and 
capacitance are functions of the distance along the 
microstrip line, x. A time harmonic dependence, i.e. 
e’” , is assumed and results in equations (1) and (2). 

Z(x) = jwL(x) (1) 
Y(x) = jwC(x) (2) 

The telegrapher’s equations, (3) and (4) express the 
relationship between voltage and current. 

(3) 

Differentiating (4) and substituting (3) yields 

(5) 

The unit-less quantity YZ is recognized as the 
propagation constant squ&xl and is related to the 
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dielectric constant. For quasi-TEM propagation E, is 
replaced with the effective dielectric constant E@. 

Yz=-02Lc=-(w/“,)* =-(W/C)2&ef (6) 

Variation of microstrip effective dielectric constant and 
characteristic impedance has been modeled accurately 
using the Hammerstad and Jensen [5] model shown below 
in Fig. 1 for a range of dielectric constants representing 
commonly used substrates. One immediately notes that 
the characteristic impedance and effective relative 
dielectric constant for a LTML on a dielectric substrate, 
can be approximated with exponential and linear 
expressions as a function of distance. These expression in 
turn impose a functional form on the distributed series 
impedance and the distributed admittance of the line. 
Such plots motivate the assumptions made in the 
development of the LTML model that follows. 

Motivated by the apparent linear nahxe of Ebb, we 
let + = d, +d,x for 0 < x < ! , where t’is the length of 
the tapered line. Therefore 

YZ =-(w/c)*&, =-(w/c)*(dl +d,x) (7) 

Since the characteristic impedance for a LTML is 
observed to be exponential in nature we are motivated to 

- 
a5 1 1.5 2 25 

W/H 

a5 1 1.5 2 25 
W/H 

Fig. 1. Microstrip characteristic impedance and effective 
dielectric constant using Hammerstad and Jensen model. 

consider letting Z.(x) be of the form 

Z = jod,8’” 

Since the characteristic impedance equals, 

z,=fi=Jz2Iyz, 
then 

(8) 

(9) 

We note that the characteristic impedance is dominated 
by an exponential behavior as desired. Substituting (7) 
and (8) in the second order differential equation (5) yields 
(10). 

d2V 
-+.4~+(B+cr)“=o 
dr2 

(10) 

A=d,, B=(wlc)‘d,,and C=(wlc)‘d2 

The solution to this differential equation is expressed in 
terms of the Airy Functions of the first and second kind 
(see IV. APPENDIX) as shown below. 

V(x)=C,F(x)+C,G(x) (11) 
where 

F(x)= e-+Ai(C) (173 

G(x)= e-$Bi(c) (13) 

The terms C, and C, are the arbitrary constants that 
accompany a general solution of a second order 
differential equation. Ai and Bi are Airy functions of 
the first and second kind, respectively. The current is 
found using the telegrapher equation (4), which results in 

Z(x)I(x) = -C,F’(x) - C,G’(x) (15) 

Direct substitution of (11) and (15) yields 

Letting M and U be defined as 

M(x)= 
F(x) G(x) 

- F’(x) -G’(x) 
(17) 

and 

(18) 

and letting 
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E(x) = M(x)-‘U(x) (1% 

then (16) implies that the following matrix product is 
invariant, i.e., a constant, or independent of the distance x. 

E(x) (20) 

If E1 = E(x = 0) , and E, = E(x = e) then it follows that 

(21) 

which we recognize as the ABCD matrix describing a two 
port circuit. Therefore, 

ABCD = E;‘E, (22) 

III. MODEL VERIFICATION 

Four circuits, designated Circuit A through D, were 
constructed to verify the Airy function models. Fig. 2 
illustrates two types of circuits used for model vertication 
(see Table I). TF& calibration and de-embeding was 
employed with an 8510 to obtain the results shown in 
Fig. 3. For the circuits each LTML was modeled as two 
cascaded tapered sections. ABCD matrices for each 
section were then modeled using the new Airy function 
formalism. 

Fig. 2. Microstrip circuits used for experimental verification 
of the Airy function modeling 

Fig. 3. Comparison of measured versus modeled data for test 
circuits A, 8, C, and !J (See Fig. 2 and Table I). 
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TABLE I* 

Circuit ==> 1 A 1 B 1 CID 
F ( 2.6 1 2.6 1 9.8 1 9.8 

*Al1 lengths 
L 

As further verification, results from OUT approach using 
the Airy function model have been compared to those 
obtained using an iterative impedance transformer method. 
In this method a tapered line is divided into multiple 
equal-length short segments with impedances that vary 
stepwise from one segment to another. In this case the 
input impedance is detetined for the combined set of 
lines and then used to calculate the reflection coefficient 
(S, I) or other S parameters. Since one expects a larger 
number of segments to produce a more accurate 
approximation the tapered line was divided into 1000 
segments. This is computationally slow, but a comparison 
showed that results from this model were identical with 
those obtained using the Airy function method. 

IV. APPENDIX 

The voltage differential equation (10) is of the 
following form where A is a constant and f(x) is a linear 
function. 

(23) 

The first derivative term can be eliminated introducing a 
function W(x) defined by the transformation 

A. 
V(x) = e * W(x) (24) 

The differential equation, where f(x) = B +Cx , then 
becomes 

(25) 

Motivated by the fact that this resembles the Airy 
differential equation, 

we transform the independent variable using the 
relationship i = p+ yx expecting that the constants p 
and y can eventually be chosen so that (25) turns into 
(26). Solving for x and substiuting the results into (25) 
p2dUC~S 

w=o 

The constant part of the expression in the parentheses 
vanishes if 

(27) 

and the differential equation simplifies to 

(28) 

Letting y = (- C)@ , this becomes the Airy differential 
equation where 

P=(& “,’ B ( 1 (29) 

The solution to the original differential equation (10) is 
therefore given by 

Ax 
V=e ZW(() (30) 

where 

( 1 
G-B -cx 

l-= (-c)2’1 (31) 

and W(C) is an Airy iimction of either the first or second 
kind, usually denoted by Ai and Bi 
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